ENSAYO DE TENSIÓN Y DIAGRAMA DE ESFUERZO – DEFORMACIÓN. Respuesta. uniformemente acelerado ejercicios resueltos colaboracin de israel r ortiz, problemas de fisica estatica resueltos pdf empleando para ello 2 horas y luego hacia el dimension de una cantidad fisica problemas ejercicios y problemas resueltos de fsica dinmica 1 bachiller y 4 eso problemas de elasticidad fisica resueltos pdf si quereis el pdf con … Ejemplos Resueltos del Módulo de Young Ejemplo 1: Un cable de 4m de longitud y 0.6 cm^2 de sección transversal utilizado por una grúa de carga, se alarga 0.6 cm cuando se suspende de uno de sus extremos un cuerpo de 500 kg, estando fijo el otro extremo. La fuerza sobre cada uno de los tres sectores se indica en las figura a continuación El elemento diferencial es estirado por la fuerza R2. ¶Indicegeneral ¶IndiceGeneral 3 ¶IndicedeFiguras 11 I Sobreestelibro 13 1. El módulo de compresibilidad del agua es 2,1 x 9 F (100)(9,8) = = 9,8 × 10 Pa A 0,12 Como el módulo volumétrico del aluminio es B = 3,5x 1010 N/m2: De donde: ΔV = - 2,8x 10-5 V = - 2,8x 10-5x 10-3 = - 2,8x 10-8 m3. ¿Cuál será el esfuerzo máximo? Por definición, El esfuerzo S en la barra es igual al cociente entre la fuerza de tensión uniaxial media F y la sección transversal original A0 de la barra. Fig. y bajo la acción de la fuerza de extensión F, el perno se alarga en el valor Fl / AaYa . Para cada alambre calcular la deformación por tensión y el alargamiento. 48 comentarios Por último, varios ejercicios también con sus soluciones y explicados … b) ¿Se romperá el alambre? Reemplazando: [ ] ρgπy (R + x )3 − R 3 d (ΔH ) = dy 3Yx π (R + x )2 Del dibujo siguiente: Cálculo del peso P de la de la parte tronco de cono que está sobre el elemento diferencial. Por elasticidad volumétrica tenemos: ΔV Δp = − B V 9 2 2 Ejemplo 47. W W a ⇒ 2W − 0,6W = a g g ⇒ a = 1,4 g El diagrama del cuerpo libre Cálculo de R2: Deformación de la barra por 5Mg: x W x a⇒ sen37º = L g L x 0,6 x W x + R2 = W 1,4 g = 2W L L g L El elemento diferencial se deforma dΔL : R dx 2W dΔL = 2 2 = 3 xdx YL YL R2 − W 1 5MgL 5MgL ΔL1 = = 2 YA 2YA Deformación de la barra por R3: 1 5MgL 5MgL = 2 2YA 4YA Deformación total: ΔL = ΔL1 + ΔL2 ΔL2 = 5MgL 5MgL + 2YA 4YA 15MgL = 4YA ΔL = Para hallar ΔL integramos desde x = 0 hasta x = L. ΔL = ∫ dΔL = 2W YL3 ∫ L 0 xdx = W YL La deformación es: Aquí no se considera el efecto del peso propio por separado, porque en el cálculo de R2 ya está considerado. Módulo Nombre volumétrico B 1010 N/m2 Aluminio 7,5 Cobre 14 24 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán Hierro Plomo Níckel Vidrio óptico Latón Acero Agua Mercurio 16 17 4,1 5,0 6,0 16 0,21 2,8 Ejemplo 46. c) ¿La distancia más corta de parada permisible cuando la velocidad del ascensor es hacia abajo? La presión que soporta, cada cara, en el primer caso, será: tan ϕ ≈ ϕ = 1 F 1 (103 )(9,8) = G A 3 × 1011 x10−1 10− 2 = 3,27x10-5 rad 2 10 N/m Solución. Deformación por cizalladura Ya hemos estudiado el módulo de elasticidad Y de un material, es decir, la respuesta del material Solución. ΔV F F F =− +σ +σ V YA YA YA Finalmente: F ΔV = − (1 − 2σ ) V YA Ejemplo 32. ¿Por qué? Deformación debido a la rotación Una barra de longitud l , área A, densidad ρ y módulo de Young Y gira con velocidad angular ω constante sobre una mesa horizontal sin fricción y pivotado en uno de sus extremos. El módulo de Young del acero es dos veces mayor que el del cobre. Un manual de materiales relaciona estos datos para el aluminio en hoja laminada Módulo de Young, 7 x 1010 Pa Límite elástico a la tracción, 7,2 x 107 Pa Coeficiente de Poisson, 0,33 Tensión de tracción final, 14 x 107 Pa Tensión de tracción permisible, 0,4 de la tensión de tracción final La tensión de tracción permisible es la máxima tensión que se considera segura cuando este material se utiliza en estructuras sometidas a de tracción conocidas y constantes. c) ¿Cuál es el módulo de corte? Un hilo delgado de longitud l , módulo de Young Y y área de la sección recta A tiene unido a su extremo una masa pesada m. Si la masa está girando en una circunferencia horizontal de radio R con velocidad angular ω, ¿cuál es la deformación del hilo? Poniendo estos m Δρ ΔV datos obtenemos que = = 0,027 %. Encuentre a) El Esfuerzo, b) la deformación unitaria, c) El Módulo de Young Solución: ¿Cuál es el objeto del refuerzo de acero en una viga de concreto? Deformaciones no uniformes por peso propio. 18. Determine la deformación que sufre la altura debido al peso propio El sólido mostrado tiene peso F, modulo elástico Y, altura H y bases circulares de radios R y 2R Integrando desde x = 0 hasta x = x’: y x' (R + x')2 dx' ∫ 0 x P = ∫ dP = ρgπ y ( R + x ') = ρgπ 3 x 3 x = ρgπy 3x [(R + x) 3 0 − R3 ] Solución. Pero como por la ley = ρ1 V1 l Δl p n , tendremos que en definitiva = de Hooke l Y Δρ p n (1 − 2σ ) . Δl = 1,0 mm 24. 13. Partiendo de los conceptos de simetría, es evidente que el alargamiento de los hilos será igual. All rights reserved. d) ¿Cuál es la energía potencial adquirida por la barra? Solución. 14. Calcular la tensión que soporta cada uno. Calcular cuánto se comprime el bloque mostrado en la figura, cuando se le aplica una fuerza P. Módulo de elasticidad Y. Ejemplo 21. P Lmite de proporcionalidad … FL FL FL + 9,8 `+3,05 YA YA YA FL = 28,05 YA ΔLTotal = 15,2 (2) Reemplazando (2) en (1): 5Mg 5Mg = y 2 2L ⇒ R2 = 5 Mg ⎛⎜1 + y ⎞⎟ 2 L⎠ ⎝ R2 − Ejemplo 17. 10 ejemplos de Materiales elásticos 1. Lycra 5. Vamos a considerar un elemento diferencial de área A = π r , altura 2 = dy ρg Y R ∫ 2 0 ( ) 2R 2 (R − y ) − y R 2 − y 2 3 3 dy (R − y )(R + y ) Donde r = ( R − y ) 2 ) 2 17 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad = Hugo Medina Guzmán Cobre Oro Hierro, fundido Plomo Nickel Platino Plata Latón ρg R ⎡ 2 R 2 ⎤ − y ⎥dy ⎢ ∫ 3Y 0 ⎣ (R + y ) ⎦ R ρg ⎡ y2 ⎤ ( ) = R R y 2 ln + − ⎥ ⎢ 3Y ⎣ 2 ⎦0 = 2 1 ⎞ 0,30 ρgR 2 ⎜ 2 ln 2 − ⎟ = 2⎠ 3Y ⎝ Y ρgR 2 ⎛ Ejemplo 31. El esfuerzo de la ruptura del cobre rolado para la cizalladura es típicamente 1,5 x 108. Restando (1) + (2)/2, obtenemos: 400 100 300 − = 0,7 × 10− 4 ⇒ = 0,7 × 10− 4 Y Y Y 300 ⇒ Y= = 4,28 x 106 N/m2 0,7 × 10− 4 Reemplazando el valor de Y en (1): 400 200 +σ = 1 × 10− 4 ⇒ 6 6 4,28 × 10 4,28 × 10 4 + 2σ = 4,28 ⇒ σ = 0,14 Ejemplo 33. a) Calcule la deformación volumétrica durante la extensión elástica de una barra cilíndrica sometida a tracción axial. Se pregunta: a) ¿Hemos rebasado el límite de elasticidad? A la constante de proporcionalidad, podemos escribir la ley de Hooke en su forma general. Solución. SOLUCIN. En nuestra página web encontrarás todos los ejercicios resueltos y apuntes de Física y Química 2 ESO en PDF. Una varilla metálica de 4 m de largo y sección 0,5 cm2 se estira 0,20 cm al someterse a una tensión de 5000 N. ¿Qué módulo de Young tiene el metal? b) Determine el módulo de Young y la constante de Poisson. La deformación del lado a es: Δa S' S' S = − +σ +σ (1) a Y Y Y Ejemplo 37. En la parte inferior de la esfera sujeta un alambre similar del cual cuelga un cubo de latón de 10 kg. Si la barra se jala hacia arriba con una fuerza F (F > mg). En el sistema mostrado en la figura, ¿cuánto bajará el peso W respecto a la posición en la cual el tensor no estaba deformado? La deformación del lado H es: ΔH S S' = − + 2σ H Y Y (2) a) Como la longitud a no cambia, Δa = 0 . dF = (dm )a c = (dm )ω 2 r dm = ρAdr ' dF = (ρAdr ')ω 2 r ' = ρAω 2 r ' dr ' Integrando: l l r r F = ∫ ρAω 2 r ' dr ' = ρAω 2 ∫ rdr 1 F = ρAω 2 (l 2 − r 2 ) 2 Parte 2: Cálculo del alargamiento El alargamiento del elemento dr es: d (Δl ) = Fdr YA Y el alargamiento total será: Fdr ρAω 2 l 2 ( = l − r 2 )dr ∫ r YA r 2YA 2 l3 1 ρω 2 l 3 ρω 3 Δl = (l - ) = 3 Y 2Y 3 Δl = ∫ Solución. Comenzando con la deformación del elemento diferencial y luego integrar para toda la longitud. MODULO DE ELASTICIDAD VOLUMETRICO. Un alambre de cobre de 31 cm de largo y 0,5 mm de diámetro está unido a un alambre de latón estirado de 108 cm de largo y 1 mm de diámetro. Por lo tanto, T/S = ρv2. Elaboracion del grafico que se pide en la tercera pregunta. Electromecánica Ing. Δl = 0,23 mm para el cobre 23. UNIVERSIDAD … Fa Ya 2 En equilibrio 2Fc + Fa = mg. Por consiguiente, Fc = Solución. Calcule los principales momentos de inercia para los cuerpos rígidos mostrados en la siguiente figura: Aplicando la segunda ley de Newton: ∑ F = ma ⇒ 3F − 7 F = (m1 + m2 + m3 )a ⇒ − 4 F = 10 ρLAa 0,4 F ⇒ a=− ρLA El conjunto se mueve hacia la izquierda. Luego de encajo el paralelepípedo se coloca un peso P sobre éste, tal que lo aplasta uniformemente, la caja impide las expansiones laterales. 2 × 29400 ω = = 301538 , o sea 1950 × 10− 4 ω = 301538 = 549 rad/s . Para ello consideremos primero el caso del bloque de la Figura que está sometido, por una parte, a un esfuerzo de compresión y en la otra dirección a un esfuerzo de tracción. Por consiguiente la variación de la densidad será 20 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán ⎛ 1 1 ⎞ mΔV Δρ = ρ 2 − ρ1 = m⎜⎜ − ⎟⎟ = V2V1 ⎝ V2 V1 ⎠ Como .la compresión no es muy grande, aproximadamente se puede tomar V2V1 = V1 2 Se puede considerar que Δρ = mΔV . La cinta adhesiva en los pañales desechables 8. Sea 1 su longitud en la dirección horizontal y h su altura. Comparando (1) y (2) vemos que k= AY (3) l Entonces 1 AY (Δl ) 2 (4) W = k (Δl ) = 2 2l Calculando la magnitud Δl por la fórmula (1) y 2 La fuerza que deforma por corte o cizalladura poniendo todos los datos numéricos en la ecuación (4) obtenemos definitivamente que W = 0,706 J. es Ejemplo 51. Datos: M, Y, A, L y κ . a) Se indican en la siguiente tabla: PUNTO NOMBRE. Problema Nº1. [email protected] De un alambre de cobre de 1,5 m de longitud y 2 mm de diámetro se cuelga un peso de 8 kg. Además en ingeniería muchas cargas son torsionales en lugar de sólo cizalladura. Determínese el esfuerzo, la deformación y el alargamiento del cable. b) La deformación de cada una de sus tres partes y su deformación total. Respuesta. Si la cuerd 25 0 136KB resuelto fisica < 23 4.- … Deformaciones por aceleración Una barra uniforme de acero (Longitud L, área de sección recta A densidad ρ , módulo de young Y) se halla sobre un plano horizontal exento de rozamiento y se tira de ella con una fuerza constante F. ¿Cuál es el alargamiento total de la barra a consecuencia de la aceleración? Una barra de masa M, módulo Y, sección A y altura L está sobre el piso. a) ΔL 1 2W W = = 2 2 L 2 YL YL Integrando: 5Mg L ⎛ y⎞ L2 ⎞ 5Mg ⎛ ⎟ ⎜ = 1 dy + + L ⎟ ⎜ 2YA ∫0 ⎝ L ⎠ 2YA ⎜⎝ 2 L ⎟⎠ 15MgL = 4YA ΔL = b) Resuelto por integración. ¿Cuál será la torsión del hilo de plata? El sólido de la figura (lados a, b y c) está sometido a los esfuerzos de compresión y tensión mostrados. ¿En un resorte? La deformación por fuerza es debido a 3F: ΔL3 = 3F 4 L FL = 12 YA YA La deformación por desplazamiento es debido a ser jalado por la fuerza R2 – 3F = 1,6 F ΔL'3 = 1,6 F 4 L FL = 3,2 2YA YA Deformación total de 3: ΔL3Total = 12 FL FL FL + 3,2 = 15,2 YA YA YA Solución. Viga horizontal sostenida mediante un tirante. ΔH S S' ⇒ = − + 2σ H Y Y ΔH 2σ 2 S S =− + ⇒ H Y (1 − σ ) Y ⎡ 2σ 2 ⎤ − 1 ⎢ (1 − σ ) ⎥ ⇒ ⎦ ⎣ 2σ 2 ⎤ P ⎡ ΔH = − 2 ⎢1 − H Ya ⎣ (1 − σ ) ⎥⎦ ΔH S =− H Y Ejemplo 36. c) El módulo de Poisson de la mayoría de metales es aprox. Dos barras de longitud ( l + Δl) cada una, 2 áreas A 1 y A 2 y módulos de elasticidad Y 1 e Y 2 respectivamente, como se muestra en la figura, se comprimen hasta introducirlas entre dos paredes rígidas separadas una distancia l . El comportamiento mecánico de un material es el reflejo de la relación entre su respuesta o deformación ante una fuerza o carga aplicada. Text of Elasticidad Ejercicios Resueltos 2. F ⇒ A F = St A = (0,425 x 107)(0,52) St = La deformación es 23 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad φ= δ = l Hugo Medina Guzmán rθ l El esfuerzo cortante es S t = Gφ = Grθ l Como el esfuerzo cortante es la fuerza tangencial por unidad de área, multiplicándolo por el área de la sección transversal de la Capa, 2 π rdr, nos dará la fuerza tangencial dF sobre la base de la Capa θ 2 ⎛ Grθ ⎞ dF = S t dA = ⎜ ⎟(2πrdr ) = 2πG r dr l ⎝ l ⎠ El torque sobre la base de la Capa cilíndrica es θ θ ⎛ ⎞ dτ = rdF = r ⎜ 2πG r 2 dr ⎟ = 2πG r 3 dr l l ⎠ ⎝ Integrando de 0 a R, el torque total sobre la base del cilindro es τ= π 2 G R4 θ l π G Para la varilla de 100 cm y de 80 cm respectivamente son: ⎛ 32 F ⎞⎛⎜ l 1 ⎞⎟ ⎛ 32 F ⎞⎛ l 2 ⎞ ⎟⎜ 3 ⎟ Y θ 2 = ⎜ ⎟⎜⎜ 3 ⎟⎟ ⎝ πG ⎠⎝ D2 ⎠ ⎝ πG ⎠⎝ D1 ⎠ θ1 = ⎜ De aquí De estas últimas obtenemos: 2τl G= πR 4θ ⎛l θ 2 = ⎜⎜ 2 ⎝ l1 O sea, para determinar C bastará con medir el ángulo θ que se produce al aplicar el torque M. ⎞⎛ D1 ⎟⎟⎜⎜ ⎠⎝ D2 3 3 ⎞ ⎛ 80 ⎞⎛ 1 ⎞ ⎟⎟ θ1 = ⎜ ⎟⎜ ⎟ 1º ⎝ 100 ⎠⎝ 2 ⎠ ⎠ = 0,1º Ejemplo 44. La circunferencia de un círculo del diámetro D = 2,5 cm es C = πD = 7,85 x10 m , El área del borde del disco cortado AAAA es el producto de la circunferencia C por el espesor del material, esto es −2 (6,25 × 10 )(7,85 × 10 ) = 49,06 × 10 −3 a) El esfuerzo de corte. De allí el valor de la velocidad máxima es v= P ρ Solución. Una mujer distribuye su peso de 500 N igualmente sobre los tacones altos de sus zapatos. Solución. Energía de deformación. La máquina al mismo tiempo mide la carga aplicada instantáneamente y la elongación resultante (usando un extensómetro). Y abriendo los paréntesis y despreciando las magnitudes Δr y Δl al cuadrado, hallamos que 2 2 Δr 1 πr 2 l = 2πrΔrl , de donde r = = 0,5 , luego Δl 2 l σ = 0,5. a) ¿Qué presión ejerce cada tacón sobre el suelo? Esfuerzo. B acero = 16 x 1010 N/m2 , B agua = 0,21 x 1010 N/m2, 1bar = 105 Pa Respuesta. ¿En un eje de dirección automotriz? Módulo de Poisson σ Sin dimensiones 0,34 0,28 a) S x = 100 50 = 400 N/m2, S y = = 200 2 (0,5) (0,5)2 N/m2 18 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán Δax 0,01 = = 1 × 10− 4 , a 100 Δa y 0,006 =− = −6 × 10− 5 a 100 Δh S = , para el diámetro h Y ΔD Δh S = −σ = −σ D h Y ΔV Δh ΔD El cambio de volumen es = = +2 V h D S S S − 2σ = (1 − 2σ ) , por lo tanto Y Y Y S S πD 2 h ΔV = (1 − 2σ )V = (1 − 2σ ) 4 Y Y b) ΔV es igual a cero cuando (1 − 2σ ) = 0 ⇒ σ = 0,5 a) Para la altura Haciendo un análisis de los cambios de longitudes: El esfuerzo en x es mayor y la longitud en x aumenta mientras que en y disminuye, siendo el esfuerzo en y menor, se puede concluir que el esfuerzo en x es de tracción y el esfuerzo en y es de compresión. V = 889 litros. a) 0,062 %, b) ρ = 1,105 g/cm3 34. 67% (3) 67% found this document ... I= = = 1.92(mm 4 ) Encontramos el ángulo de giro sabiendo, que el modulo de 64 … CURSO 2 Bachillerato. 6. Una barra homogénea, de masa m = 100 kg, está suspendida de tres alambres verticales de la misma longitud situados simétricamente. Save Save Ejercicios resueltos Resortes Decker.pdf For Later. Para una barra homogénea dm = ρAdr , siendo ρ la densidad de la sustancia que forma la barra y A, su sección. ∑ F = ma ⇒ 2W − Wsen37º = W W a ⇒ 2W − 0,6W = a g g ⇒ a = 1,4 g 1 (2W − 0,6W )L 0,7W ΔLa = = YL 2 YL2 Parte 1: Cálculo de la fuerza total sobre una sección transversal a la distancia r del pivote. Solución. Problema 7.6.1. S= N F . Se somete a una muestra de cobre de forma cúbica con 10 cm de arista a una compresión uniforme, aplicando una tensión equivalente a una tonelada perpendicularmente a cada una de sus caras. Muestra típica de sección circular para el ensayo de tensión - deformación Durante la tensión, la deformación se concentra en la región central más estrecha, la cual tiene una sección transversal uniforme a lo largo de su longitud. De un alambre de cobre de 1,5 m de longitud y 2 mm de diámetro se cuelga un peso de 8 kg. Consideremos una varilla cilíndrica de longitud l 0 y una sección transversal de área A0 sometida a una fuerza de tensión uniaxial F que alarga la barra de longitud l 0 a l , como se muestra en la figura. Una barra de acero de 2 m de longitud y 2 cm2 de seccin lleva en sus extremos. ¿Cuántos grados gira la cara superior respecto de la inferior? Primer método. a) Determine si el esfuerzo en x,y es de tracción o compresión. en ese extremo. Para esto tomamos un elemento diferencial de altura dy’ y lo integramos desde x = 0 hasta x = x’. 35. Un cubo de acero de 5 cm de arista se halla sometido a 4 fuerzas cortantes, de 1200 kg, cada una, aplicadas en sentidos opuestos sobre caras opuestas. Demostrar que cuando se somete un cuerpo elástico a una tensión de corte pura que no supera el límite elástico de corte para el material, la densidad de energía elástica del cuerpo es igual a la mitad del producto de la tensión de corte por la deformación de corte. Si con aluminio se fabrica un cubo de 10 cm de lado, se quiere saber las deformaciones que experimentará en una compresión uniforme, perpendicular a cada una de sus caras, de una tonelada, y cuándo esta misma fuerza actúa tangencialmente a la superficie de una de sus caras, estando el cubo só1idamente sujeto por la cara opuesta. Por tanto, nos queda, Δl F F F = +σ = (1 + σ ) l YA YA YA Por otra parte, la deformación en la dirección vertical corresponde a las deformaciones causadas por un lado por la fuerza de compresión en la dirección vertical y por otro por la tracción en la dirección horizontal. ?El esfuerzo de ruptura por tracción del acero es de 30×107 Pa. Igual pero si se quiere un coeficiente de seguridad de 0,6. 3. = ρ1 Y 3 N En nuestro caso pn = 9,81 × 10 , m2 N Y = 1,18 × 1011 2 y σ = 0,34. ⎛ Δl ⎞ Fha = ⎜ ⎟ Aha Yha y ⎝ l ⎠ ⎛ Δl ⎞ ⎛ Δl ⎞ A Fh = ⎜ ⎟ AhYh = = ⎜ ⎟ ha 10Yha ⎝ l ⎠ 20 ⎝ l ⎠ F De allí deducimos que ha = 2 . Si la cuerd 25 0 136KB resuelto fisica < 23 4.- Sobre la superficie del agua de un recipiente se vierte una capa de gasolina de 3cm de altura, en la cual se 42 6 527KB Read more Author / Uploaded Respuesta. Cálculo de R2: El elemento diferencial dm se mueve aceleración a debido a la fuerza (R1 –R2) Y la fuerza que lo estira es R2. Nylon 6. φ= St 4,704 × 106 = = 0,588 x10-3 G 8 × 109 radianes 22 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán = 2,65 x 105 N Ejemplo 42. FÍSICA RELATIVISTA en Física. Abriendo los paréntesis y despreciando los cuadrados de las magnitudes Δr y Δl , obtenemos 2 2 ⎛ Δl ⎞ ⎟(1 − 2σ ) , .donde σ es el ⎝ l ⎠ que ΔV = V1 ⎜ módulo de Poisson. kg Densidad del cobre ρ = 8600 3 , Esfuerzo de m 8 kg rotura del cobre S r = 2,45 × 10 m2 Solución. F= GA x h El trabajo para deformar un dx es W =∫ x = Δx x =0 GA xdx h 28 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad W= Hugo Medina Guzmán Usando los diagramas del cuerpo libre mostrados en las figuras tenemos: Para la parte de la liga L1: tenemos: 1 GA (Δx )2 = 1 FΔx 2 h 2 La densidad de energía es ΔL1 = W 1⎛F ⎞ 1 = ⎜ ⎟Δx = S t Δx A 2⎝ A⎠ 2 PL0 / 2 PL0 / 2 P = = YA FL0 2F Para la parte de la liga L2, tenemos: Ejemplo 53. 9 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán El elemento diferencial se deforma d (ΔL ) debido a la reacción R2 , (R1 − R2 ) le da la aceleración a= arrastrado sobre un plano liso, con una fuerza F = 2W. a) Si se hunde un trozo de acero dulce hasta esta profundidad, ¿en cuánto variará su densidad? , sus unidades son A0 m Deformación unitaria: Por definición, la deformación unitaria originada por la acción de una fuerza de tensión uniaxial sobre una muestra metálica, es el cociente entre el cambio de longitud de la muestra en la dirección de la fuerza y la longitud original. LEY DE HOOKE. b) La magnitud de la fuerza producida por el movimiento sísmico. Respuesta. Para que la deformación unitaria en la dirección y sea nula, se debe cumplir: 19 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán 1 (3σS − S ') = 0 ⇒ 3σS − S ' = 0 ⇒ Y S ' = 3σS Ejemplo 35. Una barra vertical de longitud L, masa M, sección transversal A y módulo de Young Y, tiene soldada en su extremo inferior una masa puntual M. Si la barra se eleva verticalmente mediante una fuerza vertical 5Mg (g = gravedad), aplicada en el extremo superior de la barra. Los ortodoncistas usan alambres de bajo módulo de Young y alto límite elástico para corregir 2 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán la posición de los dientes mediante arcos tensores. d (ΔH ) = Fdy , r = R+x Yπrr 2 En los triángulos ABC y ADE: Según muestra el diagrama del cuerpo libre del elemento diferencial, es comprimido por la fuerza P. Este elemento disminuye su longitud d(Δh), siendo Δh la disminución de longitud de h debido a la fuerza P. y x R ⇒ x= x = R H H 13 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad d (ΔH ) = Hugo Medina Guzmán Fdy Yπ (R + x ) 2 = Este elemento sufre una acortamiento d(Δh), debido al peso de la porción de pirámide que soporta (de altura y, radio base de lado 2x). ¿Por qué? El área de la sección transversal de todos los alambres es igual. Calcular a) su variación de longitud, b) su variación de volumen, c) el trabajo realizado y d) la ganancia en la densidad de energía elástica. Tomemos un elemento diferencial dy tal como se muestra en la figura. Se cuelga un torno de 550 kg del cable. 15. Gráfica típica tensión vs deformación DEFORMACIÓN ELÁSTICA Y PLÁSTICA 1 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán Cuando una pieza se somete a una fuerza de tensión uniaxial, se produce una deformación del material. Si se aplica la misma fuerza a la circunferencia de una varilla del mismo material pero que tiene una longitud de 80 cm y un diámetro de 2 cm, ¿cuál es el ángulo de torsión resultante? 29. El módulo de Young del latón es 3,5x1010 Pa Módulo de rigidez G del latón es 1,7 x1010 N/m2 −2 −5 m2 . b) El paralelepípedo esta sujeto a esfuerzo por cuatro caras, como se muestra en la figura siguiente: c) Para la mayoría de metales con un valor de aproximado a 0,3: σ ΔV S S = [1 − 2(0,3)] = 0,4 V Y Y Para el corcho, con un valor de σ aproximado a 0,0: Sea S el esfuerzo sobre cada una de las caras laterales. Determinar la deformación producida en una barra debido a su peso propio de una barra del largo L, sección A, módulo de elasticidad Y y densidad ρ . 29 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán b) Con la misma presión, ¿cuánto peso podrían soportar 2 sandalias planas cada una con un área de 200 cm2? T P 2- - W = 0. 7/18/2019 Elasticidad … lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán ⎡⎛ α 2 ⎞ ⎤ Mg ⎟⎟ − 1⎥YA = ⇒ ⎢⎜⎜1 + 2 ⎠ ⎦ 2α ⎣⎝ ⇒ α2 2 YA = Mg Mg ⇒ α3 = 2α YA Finalmente α =3 Mg YA Ejemplo 4. Para construir un móvil, un artista cuelga una esfera de aluminio de 5 kg de una alambre vertical de acero de 0,4 m de largo y sección 3×10-3 cm2. Calcule la deformación por cizalladura. En nuestra página web encontrarás todos los ejercicios resueltos y apuntes de Física 2 Bachillerato en PDF. Un alambre de acero de 2m de longitud cuelga de un soporte horizontal rígido. Problemas Resueltos de Elasticidad. 4. Pdy 2 2 , A = (2a + 2 x ) = 4(a + x ) YA Reemplazando: [ ] 4 ρgy (a + x ) − a 3 d (ΔH ) = dy 2 3Yx 4(a + x ) Del dibujo siguiente: Obtenemos: 15 Downloaded by Edwin Charca ([email protected]) 3 lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán H H x , dy = dx : a a 2 ρg H (a + x )3 − a 3 d (ΔH ) = dx 3Y a 2 (a + x )2 y= [ = ρg H 2 2 3Y a ] [a + x − a (a + x ) ]dx 3 −2 El peso del elemento diferencial es: Integrando desde x = 0 hasta x = a: ΔH = ∫ d (ΔH ) = ρg H 2 3Y a 2 ∫ a 0 ρg H 2 ⎡ dP = ρgdV = ρgπ (R + x') dy ' 2 Del dibujo siguiente: [a + x − a (a + x) ]dx 3 −2 a x2 a3 ⎤ ax = + + ⎥ ⎢ 3Y a 2 ⎣ 2 (a + x ) ⎦ 0 ρg H 2 ⎛ ⎞ a2 a2 2 ⎜ a + + − a 2 ⎟⎟ 2 ⎜ 3Y a ⎝ 2 2 ⎠ 2 1 ρgH = 3 Y = Obtenemos: y y x' y dy ' = dx' : x x y 2 dP = ρgπ (R + x') dx' x y' = Ejemplo 29. Nombre Aluminio Acero Solución. ¿Cuál es el alargamiento total de la barra? El hombre lanza la bola plata con una fuerza de 12 N. La bola verde tiene una masa de 2 Kg y la bola plata tiene una masa de 4 Kg. Solución. DESCARGAR | ABRIR PDF. Address: Copyright © 2023 VSIP.INFO. b) Determinar el mdulo de elasticidad del material expresando su valor en SI y en kp/cm2. Un hemisferio (mitad de una esfera sólida) de densidad ρ , radio R y modulo de Young Y esta sobre el piso descansando sobre su base circular determine cuanto se deforma por acción de su propio peso. Respuesta. Energía para estirar una banda elástica es U = 1 2 kx 2 FL0 En este caso k = YA = = 2 F , y x = ΔL1 , Solución. Δy = 17,1 x 10-3 m 20. Calcule densidad del agua del océano a una profundidad en que la presión es de 3430 N/cm2. Hay tres formas principales en las cuales podemos aplicar cargas: Tensión, Compresión y Cizalladura. Un ascensor es suspendido por un cable de acero. Un depósito de acero de 60 litros de capacidad contiene oxígeno a una presión manométrica de 140 Pa. ¿Qué volumen ocupará el oxígeno si se le permite que se expansione a temperatura constante hasta que su presión manométrica es nula? Si este cable es reemplazado por dos cables de acero cada uno con la misma longitud que el original pero con la mitad de su diámetro, compare el alargamiento de estos cables con el del cable original. El resorte de la ropa interior 10. En el sistema mostrado en la figura, calcular cuanto desciende el extremo B de la barra horizontal rígida y de peso despreciable, cuando se le coloca una masa M en ese extremo. Problemas Resueltos de Elasticidad - Fisica - Limite elastico, esfuerzo, material ductil, modulo de Young, Modulo de Elasticidad. Cuál debe ser el diámetro máximo de un cable de acero que se quiere emplear en una grúa diseñada para levantar un … lOMoARcPSD|3802846 Una columna de hormigón armado se comprime con una fuerza P. Considerando que el módulo do Young del hormigón Yha, es 1/10 del de hierro Yh y que el área de la sección transversal del hierro es 1/20 de la del hormigón armado, encontrar qué parte de la carga recae sobre el hormigón. ¿Cuál es el valor de ΔV/V? Si se aplica la misma fuerza a la circunferencia de una varilla del mismo material pero que tiene una longitud de 80 cm y un diámetro de 2 cm, ¿cuál es el ángulo de torsión resultante? Se tiene una columna de largo L, sección transversal A, densidad ρ, módulo de elasticidad Y. El material del cable tiene un límite elástico de 2,5 x 108 Pa y para este material Y = 2 x 1010 Pa. Datos: Densidad = ρ, gravedad = g, módulo de Young = Y Lado de la base menor = 2a; lado de la base mayor = 4a Altura del tronco de pirámide regular = H Integrando desde x = 0 hasta x = x’: P = ∫ dP = 4 ρg y x' 2 ( a + x') dx' ∫ x 0 y (a + x') = 4 ρg 3 x 3 x [ 0 4 ρgy (a + x )3 − a 3 = 3x ] El elemento diferencial se comprime: d (ΔH ) = Solución. Un hilo está formado por un núcleo de acero dulce de 1,3 cm de diámetro, al cual se le ha fusionado una capa exterior de cobre (Y = 12 x 1010 Pa) de 0,26 cm de gruesa. Cuando la fuerza F que actúa sobre el cuerpo es paralela a una de las caras mientras que la otra cara permanece fija, se presenta otro tipo de deformación denominada de cizalladura en el que no hay cambio de volumen pero si de forma. d (Δh) = ρg 4 x 2 ydy 3Y 4 x 2 = 2 2 ρg 3Y ydy Integrando desde y = 0 hasta y = h h Δh = ∫ 0 ρg 3Y ydy = ρg y 2 3Y 2 Como el Peso total es Δh = h 0 ρgAh 3 1 ρgh 2 = 2 3Y , obtenemos: 1 (Peso total)h 2 Y (Area base) Ejemplo 27. V1 ρ1 = Ejemplo 38. especifican Las dos constantes Y y σ completamente las propiedades de un material homogéneo isotrópico. Ejemplo 2. κ Ejemplo 12. La deformación por fuerza es debido a R2: y = ma y 5Mg − Mg − Mg = 2Ma ⇒ a = R 2L FL ΔL2 = 2 = 9,2 YA YA 3 g 2 La deformación por desplazamiento es debido a ser jalado por la fuerza R1 - R2 = 5,2 F – 4,6 F = 0,6 F ΔL' 2 = 0,6 F 2 L FL = 0,6 2YA YA Deformación total de 2: FL FL + 0,6 YA YA FL = 9,8 YA ΔL2Total = 9,2 Deformación de 1. c) ¿Cuál es el aumento de volumen? P' dy ρAg = ydy d (ΔL ) = YA YA ρg = ydy Y debido al peso Luego ΔL = ∫ d (ΔL ) = ρg ∫ L 0 = κ (L 2 2 Luego: − y2 κg d (ΔL ) = (L 2 2YA ΔL = ∫ d (ΔL ) = L Y 2 1 ρgL 1 (ρgAL )L = = 2 Y 2 AY 1 (Peso Total ) × L o ΔL = AY 2 0 κg ⎛ Observamos que esta deformación es igual a la mitad de la deformación que se produciría, como sí, el peso estuviera concentrado en el extremo superior. ) Δl mω 2 R = l AY 26. Módulo Elástico = esfuerzo deformación Para el caso de Deformación por tracción o compresión longitudinal El esfuerzo es S= Δl l F , la deformación unitaria es A F = −kΔl δ= El signo menos es porque la fuerza es en oposición a la deformación. La densidad de la V1 barra después de comprimida será siendo V2 = π (r + Δr ) b) De la ecuación (2): 2 ρ2 = m , V2 (l − Δl ) . b) el doble en diámetro y dé la misma longitud? Determine la fuerza requerida para perforar un agujero del diámetro 2,5 cm en una placa de acero de ¼ de pulgada (6,25 mm) de espesor. El número de deformaciones elásticas en un material es limitado ya que aquí los átomos del material son desplazados de su posición original, pero no hasta el extremo de que tomen nuevas posiciones fijas. ¿En tacos de caucho? Solución. Caucho 7. Ejercicios Resueltos de Números Cuánticos para Quimica de Bachillerato (28.841) Ejercicios Resueltos de Cinemática Variados, de MRU y MRUA, para Física y … Determine la deformación que sufre la atura de la barra por peso propio. Hemos dejado para descargar y consultar online Problemas y Ejercicios Campo Electrico 2 Bachillerato Fisica en PDF con … Una barra homogénea de cobre de 1 m de longitud gira uniformemente alrededor de un eje vertical que pasa por uno de sus extremos. Por la ley de Hooke YA Δl F Δl (1) = ⇒ F= l YA l Pero para las fuerzas elásticas F = kΔl (2) Ejemplo 52. b) ¿Cuál es la densidad del agua del mar a esta profundidad si la densidad en la superficie vale 1,04 g/cm3? c) ¿Cuál deberá ser el ahorro de masa si se utilizase el cilindro hueco en un eje de una máquina en lugar de utilizar el cilindro macizo? Δl = 0,27 mm para el latón. Si la cuerd, < 23 Así cuando la fuerza cesa, los átomos vuelven a sus posiciones originales y el material adquiere su forma original. Para realizarlo utilizamos los datos … Solución: Para poder resolver el problema, convirtamos las unidades dadas a unidades del Sistema Internacional, quedando así: m = 200 g r ( 1 k g 1000 g r) = 0.20 k g ¿Cuál será la posición x de la unión de ambas barras? Por lo tanto su deformación será un diferencial de ΔL esto es d (ΔL ) : L R2 dx y ΔL = ∫ d ( ΔL) 0 YA Como R2 = m' a , m' = ρAx y F F , tenemos: a= = m ρAL ⎛ F ⎞ x ⎟⎟ = F R2 = (ρAx )⎜⎜ L ⎝ ρAL ⎠ d (ΔL) = = F + 2F d (ΔL ) = F ΔL = AY = 2F ρAL x L F ⎛ 2x ⎞ ⎜1 + ⎟dx AY ⎝ L⎠ L ∫ L 0 x2 ⎞ F ⎛ ⎛ 2x ⎞ ⎜⎜ x + ⎟⎟ ⎜1 + ⎟dx = L⎠ L ⎠0 AY ⎝ ⎝ 2 FL AY Segundo método. StuDocu is not sponsored, E L A S T I C I D A D. 1. Mecánica ELASTICIDAD – PROBLEMAS RESUELTOS Premisa de Trabajo: En la resolución de cada … Un cable de acero de 2 m de largo tiene una sección transversal de 0,3 cm2. Download PDF Report. Cobre estirado en frío R4 π D4 θ ⇒τ= G θ, 2 l 32 l π D4 Como τ = FD ⇒ FD = G θ , de aquí 32 l ⎛ 32 F ⎞⎛ l ⎞ θ =⎜ ⎟⎜ 3 ⎟ ⎝ πG ⎠⎝ D ⎠ τ= DEFORMACION VOLUMETRICA. Δp ΔV V Donde la constante de proporcionalidad B, depende solamente del material. Se tiene el paralelepípedo mostrado en la figura que encaja perfectamente en una caja rígida. Solución. θ = 0,1º 31. La constante de fuerza es: k = Fe / x = 540 N / 0.150 m = 3600 N / m. Luego, la deformación x del resorte causada por el peso del bloque es: x = Fe / k = (m*g) / k x = ( (60 Kg)* (9.8 m/s^2)) / (3600 N/m) = 0.163 m La energía potencial elástica almacenada en el resorte es: Uel = 1/2 * (3600 N/m) * (0.163 m)^2 = 47.82 J Ejemplo. Primer método. Determine la deformación que sufre la altura de la Gran pirámide de Keops en Egipto debido a su propio peso, sabiendo que posee una altura de 147 m, su base es cuadrada de lado 230 m y que fue construida con bloques de piedra caliza y granito con módulo de Young = 35 x 109 N/m2 y densidad = 2400 kg / m3. T l - P l - W 2 l = 0. Dos alambres del mismo material, y misma longitud l , cuyos diámetros guardan la relación n. ¿Qué diferencia de alargamientos tendrán bajo la misma carga? Física II Guía de ejercicios 7.6 Problema 7.6. 1020,4 kg/cm2 = 1 020,4x9,8 N/cm2 =108 N/m2; ρ = 8930 kg/m3. a) ¿Cuál es el esfuerzo sobre las paredes laterales? El paralelepípedo esta sujeto a esfuerzo por sus seis caras, como se muestra en la figura siguiente: longitud. Se especifica que la tensión del cable nunca excederá 0,3 del límite elástico. File Name: ejercicios resueltos de elasticidad fisica .zip Size: 2951Kb Published: 06.12.2021. Un cubo de gelatina de 30 cm de arista tiene una cara sujeta mientras que a la cara opuesta se le aplica una fuerza tangencial de 1 N. La superficie a la que se aplica la fuerza se desplaza 1 cm. A = (3,45 × 10 8 )(49,06 × 10 −5 ) través del borde es S = = 1,69 x 105 N. La hoja de acero se corta por cizalladura cuando el esfuerzo llega a ser igual 3,45 x 108 N/m2, es decir, cuando F = 1,69 x 105 N. Esta es la fuerza de 1,69 x 105 N, equivalente a 17,3 toneladas es requerida para perforar el agujero de 2,5 cm de diámetro El sacador y los dados son operados por una máquina conocida como prensa; en este caso uno tendría que utilizar una prensa con una capacidad de 20 toneladas o más. Saltar al contenido. en Física. Una cierta fuerza se requiere para romper un alambre. La tensión deberá ser menor que la tensión de fluencia del material, de ahí que el límite elástico tenga que ser alto, ya que si el arco se deforma plásticamente, su deformación es irreversible y por lo tanto, no estará tensionando los dientes para corregir su posición transversal se convierte en un paralelogramo. Manteniendo el extremo superior fijo aplicamos un torque τ que gira al extremo inferior un ánguloθ. Para calcular la aceleración de la barra aplicamos: ∑F Deformación de 2. La muestra se sostiene por sus extremos en la máquina por medio de soportes o mordazas que a su vez someten la muestra a tensión a una velocidad constante. Al cubo de la figura de lado 50cm se le aplica dos pares de fuerzas Fx=100 N y Fy=50 N obteniendo como resultado que la longitud en el eje x aumenta en 0,01% y la longitud en el eje y disminuye en 0,006%. Una estatua se encuentra soldada a un pedestal de latón, que se muestra en la figura. b) ¿Cuál es la deformación de corte? Distribuci¶ondeestedocumento 15 II Teor¶‡a, esquemas para la resoluci¶on de problemas y El cubo se deforma en el plano del papel y toma la forma de un rombo con ángulos ⎛π ⎞ ⎛π ⎞ ⎜ − 2φ ⎟ y ⎜ + 2φ ⎟ ⎝2 ⎠ ⎝2 ⎠ Ejemplo 41. F S esfuerzo = A= t deformación δ φ h F (1200(9,8)) St = = = 4,704 x106 N/m2 2 A (0,05) El módulo de cizalladura o de rigidez G es una propiedad mecánica de cada material G= Siendo pequeños los ángulos de desplazamiento podemos escribir Deformación = δ h Solución. Solución. Por estar el sistema en equilibrio: T1 + T2 = Mg = 2 000 x 9,8 N De ambas T1 = 5 081,5 N T2 = 14 517,5 N Ejemplo 5. Módulos de Young: acero = 20x1010 N/m2, aluminio =7x1010 N/m2 Solución. Se cuelga una viga de 2000 kg de dos cables de la misma sección, uno de aluminio y otro de acero. b) ¿Se romperá el … El paralelepípedo de la figura está hecho de un material con módulo de Young Y, y constante poisson σ. Ronald F. Clayton Un hilo de 80 cm de largo y 0,3 cm de diámetro se estira 0,3 mm mediante una fuerza de 20 N. Si otro hilo del mismo material, temperatura e historia previa tiene una longitud de 180 cm y un diámetro de 0,25 cm. Un alambre de acero dulce de 4 m de largo y 1 mm de diámetro se pasa sobre una polea ligera, uniendo a sus extremos unos pesos de 30 y 40 kg. Hallar la deformación longitudinal de la barra. ¿Que fuerza se requiere para romper un alambre del mismo material el cual es a) del doble de longitud? b) ¿Cuáles son las variaciones relativas de la anchura y altura? Si la cuerda tiene 50 m de largo y 7 mm de diámetro, ¿qué módulo de Young tiene el Nylon? Una fuerza de la magnitud F se ejerce en el sacador, el esfuerzo de corte (fuerza por unidad de área) a F ⇒ A F = S . 32 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán 36. 4.- Sobre la superficie del agua de un recipiente se vierte una capa de gasolina de 3cm de altura, en la cual se, lOMoARcPSD|3802846 Elasticidad Fisica 2 ejercicios resuelto Fiscaal recht (UC Leuven-Limburg) StuDocu is not sponsored or endorsed by any college or university Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán CAPÍTULO 1. y b) ¿deformaciones iguales en A y B? ejemplos_elasticidad_I.pdf — PDF document, 613Kb. Solución. 0,3. = 0: R1 + R2 − W = 0 (1) Geométricamente, tiene que cumplirse que los alargamientos sean iguales: Δl 1 = Δl 2 Por elasticidad R1l 1 R2l 2 = ⇒ AY AY R1l 1 = R2 l 2 La barra es indeformable y de peso P. El tensor BC es de peso despreciable, área A y módulo de elasticidad Y. Solución. Respuesta. l ⎝ AaYa + AcYc ⎠ Ejemplo 9. Integrando, obtenemos F= ρAω 2 l 2 2 De donde el número límite de revoluciones por segundo será 2 2 l F = ∫ rω 2 dm Sr = )( ) F ρω 2 l 2 = ⇒ ω= 2 A 2S r , ρl 2 reemplazando valores; ω= )( ) o Por tanto: ( 2 2,45.10 8 (8600)(1) 2 ) = 239 rad s 239 = 38 rev/s 2π Deformaciones no uniformes por área variable. Download >> Download Elasticidad pdf fisica Read Online >> Read Online Elasticidad pdf fisica elasticidad fisica 2 elasticidad fisica definicion ejercicios resueltos … (2) Resolviendo las ecuaciones (1) y (2), obtenemos: R1 = l2 l W y R2 = 1 W L L Ejemplo 8. Para encontrar la tensión del hilo. , sus unidades son m Δl Y= F A =S Δl δ l TABLA I Módulo de elasticidad o módulo de Young. a) ¿Cuánta energía almacena cuando se suspende en él una carga de 5 kg? En el alambre, exactamente en el centro, fue colgado un farol de masa M. El área de la sección transversal del alambre es A, el módulo de elasticidad es Y. Determinar el Angulo α, de pandeo del alambre, considerándolo pequeño. El elemento diferencial dy soporta el peso P ' de la porción de barra de longitud y que está sobre él. Volver a resolver el Problema anterior, teniendo en cuenta esta el peso del cable cuando tiene su longitud máxima de 150 m. La densidad del material del cable es 7,8 x 103 kg /m3. Hállese la longitud que ha de tener un hilo de alambre, de densidad 8,93 y módulo de rotura 1020,4 kg/cm2 para que se rompa por su propio peso. Solución. módulo de elasticidad Y. Solución. Por equilibrio estático, ∑ τo = 0 Tl - Pl - W2l = 0 T - P -2W = 0 T = P + 2W(1) Geométricamente, considerando que el giro que se produce es pequeño, podemos escribir: El módulo de Young de A es 2,4×1011Pa y de B 1,2×1011 Pa. ¿En que punto de la varilla debe colgarse un peso P a fin de producir a) esfuerzos iguales en A y B? El módulo de Young del acero es 200×109 Pa. 16. 9525 N θ = 0,00422º 32. a) Desarrollar una expresión para la constante de torsión de un cilindro hueco en función de su diámetro interno Ro, su radio externo R1, su longitud l y su módulo de corte G. b) ¿Cuál deberá ser el radio de un cilindro macizo de la misma longitud y material y que posee la misma constante de torsión? − 2 S 2(3B + S ) b) Demostrar que a partir de esta ecuación se sigue que el coeficiente de Poisson debe estar comprendido entre -1 y 1 . = Δ YA F(1) Pero para las fuerzas elásticas F =kΔl(2) Comparando (1) y (2) vemos que l AY k=(3) Entonces l l l 2 2 12 W = k Δ 2 =AYΔ(4) Calculando la magnitud Δlpor la fórmula (1) y poniendo todos los datos numéricos en la ecuación (4) obtenemos definitivamente que W = 0,706 J. Ejemplo 51. Un alambre de acero de 2m de longitud Si los cables inicialmente tienen igual longitud y la viga finalmente está horizontal, ambos cables han experimentado el mismo alargamiento: Como Δl = Fl , YA lT1 lT2 = de aquí Y1 A Y2 A mg = 250 N y Fa = 2Fc = 500 N. 4 Ejemplo 6. La densidad en la superficie es 1024 kg/m3. Encontrar las fuerzas que surgen en el perno y en el tubo debido al hacer la tuerca una vuelta, si la longitud del tubo es l , el paso de rosca del perno es h y las áreas de la sección transversal del perno y del tubo son iguales a Aa, y Ac respectivamente Por equilibrio estático, Tl - Pl - W 2l = 0 T - P - 2W = 0 T = P + 2W ∑τ o =0 (1) Geométricamente, considerando que el giro que se produce es pequeño, podemos escribir: x = 2Δl Por elasticidad, el estiramiento Δl del tensor es: Δl = Tl AY 5 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán Luego, x = 2Tl AY (2) Reemplazando la expresión (1) en (2): x = 2(P + 2W )l AY Solución. ¿qué fuerza se requerirá para alargarlo hasta una longitud de 180,1 cm? Una cuerda de Nylon se alarga 1,2 m sometida al peso de 80 kg de un andinista. Respuesta. 6. CATEDRA DE FISICA I Ing. Respuesta. Determinación de la relación entre el módulo de rigidez, el módulo de Young y el módulo de Poisson. Las barras inclinadas son iguales de área A y módulo de elasticidad Y. Asuma pequeñas deformaciones, o sea, que se pueden hacer las aproximaciones geométricas usuales. Ahora, examinaremos la deformación por cizalladura en el que no hay cambio de volumen pero si de forma. La energía necesaria para estirar una cantidad x una muestra de material de constante de rigidez k es Energía = 1 ∫ fdx = ∫ kxdx = 2 kx 2 o en función A = 10 -6 m 2 , Y = 2 × 10 2 N/m 2 W = trabajo realizado por la fuerza F = kx en alargar el alambre una longitud x. W= 1 2 F kx , con F = kx ⇒ x = k 2 2 1 ⎛F⎞ 1 F2 W = k⎜ ⎟ = 2 ⎝k⎠ 2 k YA Para un alambre k = l de F Energía = Y = 2 x 1011 N/m2, A = área de la sección transversal = 10 -6m2 Solución. Calcular el módulo de rigidez del material en función a las características geométricas de un alambre (longitud l y radio R) y del torque aplicado. Se pregunta: a) ¿Hemos rebasado el límite de elasticidad? c) La ecuación de la elástica puede obtenerse (tramo A-B) resolviendo la ecuación diferencial: d 2v dx 2 M EI Integrando una vez: dv M =− x + C1 dx EI y, volviendo a integrar: M x2 + C1x + C2 v =− EI 2 Consolidado ΔV ⎛ Δa ⎞ ⎛ Δb ⎞ ⎛ Δc ⎞ =⎜ ⎟total + ⎜ ⎟total + ⎜ ⎟total V ⎝ a ⎠ ⎝ b ⎠ ⎝ c ⎠ 6S = 3S (4σ ) − 6 S = (2σ − 1) Y Y Y DEFORMACIÓN POR CIZALLADURA O CORTE. l = 2 m , F1 = 5 × 9,8 N , F2 = 10 × 9,8 N 1 Fx 2 Si la sección transversal de la muestra es A y su longitud l entonces podemos escribir la ecuación como Reemplazando: W= Energía 1 Fx Energía 1 ⎛ F ⎞⎛ x ⎞ = ⎜ ⎟⎜ ⎟ o = Al 2 ⎝ A ⎠⎝ l ⎠ Al 2 Al 1 F2 2 YA l F 2l 2 AY 2 F12 l ( 5 × 9,8) (2) a) W1 = = 0,012 J = 2 AY 2 10 −6 2 × 1011 = Energía por unidad de volumen = 1 (Esfuerzo)(Deformación unitaria) 2 Esta es la energía necesaria para estirar o comprimir la muestra, teniendo en cuenta el módulo de Young y la energía por unidad de volumen, puede expresarse como Energía 1 (Esfuerzo) 2 = Y 2 Volumen ( b) W2 = ) F22 l (10 × 9,8)2 (2) = 0,048 J = 2 AY 2(10 −6 )2 × 1011 El incremento en energía almacenada es: ΔE = W2 − W1 = 0,048 – 0,012 = 0,036 J. Ejemplo 50. Diagramas del cuerpo libre del conjunto y de las partes: Por equilibrio estático, ∑F y h⎛ AY AY ⎞ F = ⎜⎜ a a c c ⎟⎟ . Ejemplo 10. El peso que soporta es: peso = área de su base es: A = πr 1 3 ρg ( πr 2 y ) el 2 El peso del elemento diferencial es: ρgπr 2 ydy ρg = ydy d (Δh) = 3Y 3Yπr 2 dP = ρgdV = ρg 4(a + x') dy ' 2 Del dibujo siguiente: Integrando desde y = 0 hasta y = h h Δh = ∫ 0 ρg 3Y ydy = ρg y 2 3Y 2 h = 0 1 ρgh 2 2 3Y Como el Peso total es ρgAh/3, obtenemos: Δh = 1 (Peso total)h 2 Y (Area base) Obtenemos: y y x' y dy ' = dx' : x x y 2 dP = 4 ρg (a + x') dx' x y' = Ejemplo 28. 6 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán Solución. En este ensayo la muestra se deforma usualmente hasta la fractura incrementando gradualmente una tensión que se aplica uniaxialmente a lo largo del eje longitudinal de la muestra. La variación relativa de volumen que se observa es de 7,25×10-6 (∆V/Vo). Calcule cuanto estira el cuerpo. EJERCICIOS RESUELTOS DE ELASTICIDAD - FÍSICA 2 - UNIVERSIDAD - YouTube 0:00 / 4:25 EJERCICIOS RESUELTOS DE ELASTICIDAD - FÍSICA 2 - UNIVERSIDAD 3,609 views … fisica, ejercicios resueltos. 1 ⎛ πG ⎞ 4 4 4 4 4 R − R , b) ( ) R = R − R ⎟ 1 0 1 0 ⎝ 2l ⎠ ⎡ R12 − R02 ⎤ c) Ahorro = 100 ⎢1 − ⎥% R12 + R02 ⎥⎦ ⎢⎣ a) τ 0 = ⎜ ( ) ( ( ) ) 33. El módulo elástico es conocido como el MODULO DE YOUNG. El ejercicio se reduce a calcular si la disminución del precio, con la elasticidad de la demanda que nos dan, producirá o no el aumento de las ventas desde 30 a 36, es decir un aumento del 20% … Al suspenderla, ambos cables se estiran lo mismo. El cono esta hecho de un material de densidad ρ y módulo de elasticidad Y. Tomemos un elemento diferencial dy, tal como de indica en la figura Solución. Ejercicios resueltos de elasticidad fisica 2 pdf Elasticidad: esfuerzos y tensiones pdf Contenido [ Mostrar] Las fuerzas pueden afectar a la forma de un objeto. Words: 54,149; Pages: 349; Preview; Full text; Universidad Carlos III de Madrid C3 ... Et= 2,2 GPa … b) ¿Si la carga se aumenta 10 kg, en cuanto aumenta energía almacenada? − y 2 dy κg (L 2YA ∫ L 0 2 ) − y 2 dy L y3 ⎞ ⎜ ΔL = L y − ⎟⎟ 2YA ⎜⎝ 3 ⎠0 κg ⎛ 3 L3 ⎞ κgL3 ⎜ L − ⎟⎟ = = 2YA ⎜⎝ 3 ⎠ 3YA 2 Como la masa total es M =∫ L 0 Ejemplo 11. De las ecuaciones de equilibrio. Nota: En R3 ya está considerado el peso de la masa puntual M colocada en el extremo inferior de la barra. 2. Fisica 2 Bachillerato Ejercicios Resueltos PDF. A G = 48,0x109 N/m2 La razón del esfuerzo de compresión uniforme a la deformación por compresión uniforme recibe es el módulo de elástico que en este caso se conoce como módulo de compresibilidad volumétrica o volumétrico (B). F = 5812 N 25. Δr Δl , de aquí el módulo de Poisson =σ r l Δr σ = r , siendo r el radio del alambre y l su Δl l Solución. alargamiento resultante. El del corcho, aprox. Considere que la densidad lineal de la barra varía según ρ l = κy , ( κ es constante e y la altura y ) Integrando ydy L L y2 dm = ∫ κydy = κ 0 2 L L 0 2 L 2 2M κgL3 2MgL ΔL = 2 = 3YA κL 3YA = medida desde el piso).
empresa san martin nobleza tacna,
practicante de ingeniería industrial sin experiencia,
quienes son los proveedores de nestlé,
impacto ambiental libro pdf,
como hacer mazamorra de membrillo con maizena,
sesiones de aprendizaje 2022 secundaria matemática,
consecuencias de la contaminación del aire en arequipa,
cuántos ministros tiene el perú,
como dibujar kawaii pdf gratis,
tumor estromal gastrointestinal pronóstico,
renta de tercera categoría,
manual esoterico de celia blanco pdf,
ejercicios de fisioterapia para paraplejia,
san pablo pensiones derecho,
cuantas semillas trae una bolsa de maíz,
casación penal por falta de motivación,
padre porque me has abandonado en arameo,
todas las carreras profesionales,
repostería venezolana,
marcadores metadiscursivos ejemplos,
ejemplos del método demostrativo,
carrera que estudia los huesos,
proyectos chacarilla san borja,
satelital abancay apurimac,
cuántos peajes hay de lima a trujillo,
frases de navidad creativas,
manual de derecho romano argüello pdf,
libros astrología pdf descargar,
diseño de pavimentos tesis,
administración hotelera y turismo,
precio nissan sentra 2016,
tienda de ropa de rock y metal,
problemas en el sector agrícola,
ingenieros civiles estructurales,
causas de desempleo en el perú,
receta de ceviche para 30 personas,
carnet universitario upn 2023,
mapa de cutervo y sus distritos,
plan de acompañamiento pedagógico 2021,
oechsle televisores samsung,
mejor app para aprender alemán gratis,
conciencia ecológica cita textual,
diagnóstico automotriz,
que departamentos utilizan el sap,
entidades perceptoras de donaciones 2022,
requisitos para sacar dni azul,
carta de preaviso de despido perú,
modelo contrato docentes,
impuestos diferidos caso práctico,
manual ford edge 2013,
los niños pueden entrar a los centros comerciales hoy,
copia literal de propiedad,
productos importados en lima,
convocatoria minedu 2022 puno,
munilima agenda cultural,
proyectos de educación inicial, maestra jardinera,
pitagoras academia presencial,
tecnología médica carrera perú,
metáforas estructurales,
interbank simulador hipotecario,
personajes de 'stranger things 4 pelo largo,
inteligencia emocional y autoestima tesis,
rustica san juan de lurigancho carta,
código de ética profesional de un investigador,
biotecnología concepto,
decreto supremo n° 103 2022 pcm,
chaleco reflectivo malla,
delimitación conceptual,
municipalidad de san juan bautista iquitos telefono,
dentista para niños en villa el salvador,
venta semilla papaya hibrida en lima,
estudio hidrológico de la cuenca del río pativilca,
ingeniería financiera uni,
consultas tributarias sunat,
huacatay propiedades nutricionales,
ciencias de la computación universidades,
cuanto cuesta el metro cuadrado de vaciado de concreto,
stranger things mother,
oraciones eliminadas la libertad,
procesos de planificación curricular ppt,
Técnica De Dibujo Con Sanguina,
Tesis De Experimentos En Preescolar,
Trébol Rojo Valor Nutricional,
Cambio Climático Pdf Tesis,
10 Emprendedores Peruanos,
Doberman En Adopción Perú,
Trepanaciones Craneanas Con Oro,
Póliza De Seguro Transporte Marítimo Pdf,